Autor: |
Liu, Samuel, Alexander, Kellianne D., Francis, Michael M. |
Předmět: |
|
Zdroj: |
Journal of Developmental Biology; Dec2024, Vol. 12 Issue 4, p27, 17p |
Abstrakt: |
As nervous systems mature, neural circuit connections are reorganized to optimize the performance of specific functions in adults. This reorganization of connections is achieved through a remarkably conserved phase of developmental circuit remodeling that engages neuron-intrinsic and neuron-extrinsic molecular mechanisms to establish mature circuitry. Abnormalities in circuit remodeling and maturation are broadly linked with a variety of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Here, we aim to provide an overview of recent advances in our understanding of the molecular processes that govern neural circuit remodeling and maturation. In particular, we focus on intriguing mechanistic insights gained from invertebrate systems, such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We discuss how transcriptional control mechanisms, synaptic activity, and glial engulfment shape specific aspects of circuit remodeling in worms and flies. Finally, we highlight mechanistic parallels across invertebrate and mammalian systems, and prospects for further advances in each. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|