Tornadic Storm over the Foothills of Central Nepal Himalaya.

Autor: Kitada, Toshihiro, Shrestha, Sajan, Maharjan, Sangeeta, Bhattarai, Suresh, Regmi, Ram Prasad
Předmět:
Zdroj: Meteorology; Dec2024, Vol. 3 Issue 4, p412-446, 35p
Abstrakt: On the evening of 31 March 2019, Parsa and Bara Districts in central Nepal were severely hit by a wind storm which was the first documented tornadic incidence in Nepal.In this paper, we investigate the background of the tornado formation via numerical simulations with the WRF-ARW model. The results show that: (1) a flow situation favorable to the generation of mesocyclones was formed by a combination of local plain-to-mountain winds consisting of warm and humid southwesterly wind in the lower atmosphere and synoptic northwesterly wind aloft over the southern foothills of the Himalayan Mountain range, leading to significant vertical wind shear and strong buoyancy; (2) the generated mesocyclone continuously shed rain-cooled outflow with 600∼800 m depth above the ground into the Chitwan valley while moving southeastward along the Mahabharat Range at the northeastern rim of the Chitwan valley; (3) the cold outflow propagated in the valley, forming a front; and (4) the tornado was generated when this cold outflow passed over the Siwalik Hills bordering the southern rim of the Chitwan valley. At this point, descending flow around a high mountain generated positive vertical vorticity near the ground; blocking by this high mountain and channeling through a mountain pass enhanced updrafts at the front by forming a hydraulic jump. These updrafts amplified the positive vertical vorticity via stretching, and this interaction of the cold outflow with the Siwalik Hills contributed to tornadogenesis. The simulated location and time of the disaster showed generally good agreement with the reported location and time. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index