High-loaded tidal flow constructed wetlands coupled with microbial fuel cells: effects of the vegetation and filling material size.

Autor: Souza, Thiago Oliveira de, Assis, Levi Dal Sasso de, Marques, Diego da Silva, Coelho, André Luiz de Freitas, Cecon, Paulo Roberto, Borges, Alisson Carraro
Předmět:
Zdroj: Environmental Science & Pollution Research; Dec2024, Vol. 31 Issue 58, p66445-66462, 18p
Abstrakt: The sanitation resource recovery is a contemporary strategy fully in line with the concept of the circular economy. The by-products from constructed wetlands technology include treated water, nutrients, biomass and energy. The aim of the present study was to evaluate the sewage treatment and resources recovery in constructed wetlands operating in a tidal flow configuration, coupled with microbial fuel cells (MFC). The following factors were evaluated: two types of filling material (gravel #0 and #1) and two cultivated species, Pennisetum purpureum sp. (BRS capiaçu elephant grass) and Musa spp. (dwarf cavendish banana). The treatment cycle in each CW lasted a total of 8 h. An increase in the levels of dissolved oxygen was seen due to the tidal flow configuration, enabling the biochemical processes to remove contaminants and produce an electric current. Acceptable removal efficiency was seen for most monitored parameters. The mean values for the COD output concentration were 119, 109, 117 and 98 mg L−1; removal efficiency 80%, 83%, 80% and 82%; and for wetlands with banana in gravel #1 (BG1), banana in gravel #0 (BG0), capiaçu in gravel #1 (CG1) and capiaçu in gravel #0 (CG0), respectively. The plant and type of filling material affected the performance of the CW, with the CG0 system being the most efficient in COD removal, and standing out for productivity. The plant and filling material affected energy production in the MFC, where the CG0 CW was again the most efficient, with maximum values of up to 970 mV. The results show that tidal flow CW can function with reduced cycle times and, if coupled with MFC, are able to produce energy. This study integrates high-load tidal flow CW with MFC at a pilot scale, offering combined benefits of wastewater treatment and energy generation. By using locally adapted species, the research provides valuable insights into optimising system performance and understanding the impact of tidal flow cycles, enhancing the practical application of CW with MFC in tropical regions. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index