Momordicine-I suppresses head and neck cancer growth by modulating key metabolic pathways.

Autor: Bandyopadhyay, Debojyoty, Tran, Ellen T., Patel, Ruchi A., Luetzen, Matthew A., Cho, Kevin, Shriver, Leah P., Patti, Gary J., Varvares, Mark A., Ford, David A., McCommis, Kyle S., Ray, Ratna B.
Předmět:
Zdroj: Cell Communication & Signaling; 12/18/2024, Vol. 22 Issue 1, p1-13, 13p
Abstrakt: One of the hallmarks of cancer is metabolic reprogramming which controls cellular homeostasis and therapy resistance. Here, we investigated the effect of momordicine-I (M-I), a key bioactive compound from Momordica charantia (bitter melon), on metabolic pathways in human head and neck cancer (HNC) cells and a mouse HNC tumorigenicity model. We found that M-I treatment on HNC cells significantly reduced the expression of key glycolytic molecules, SLC2A1 (GLUT-1), HK1, PFKP, PDK3, PKM, and LDHA at the mRNA and protein levels. We further observed reduced lactate accumulation, suggesting glycolysis was perturbed in M-I treated HNC cells. Metabolomic analyses confirmed a marked reduction in glycolytic and TCA cycle metabolites in M-I-treated cells. M-I treatment significantly downregulated mRNA and protein expression of essential enzymes involved in de novo lipogenesis, including ACLY, ACC1, FASN, SREBP1, and SCD1. Using shotgun lipidomics, we found a significant increase in lysophosphatidylcholine and phosphatidylcholine loss in M-I treated cells. Subsequently, we observed dysregulation of mitochondrial membrane potential and significant reduction of mitochondrial oxygen consumption after M-I treatment. We further observed M-I treatment induced autophagy, activated AMPK and inhibited mTOR and Akt signaling pathways and leading to apoptosis. However, blocking autophagy did not rescue the M-I-mediated alterations in lipogenesis, suggesting an independent mechanism of action. M-I treated mouse HNC MOC2 cell tumors displayed reduced Hk1, Pdk3, Fasn, and Acly expression. In conclusion, our study revealed that M-I inhibits glycolysis, lipid metabolism, induces autophagy in HNC cells and reduces tumor volume in mice. Therefore, M-I-mediated metabolic reprogramming of HNC has the potential for important therapeutic implications. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje