Gait Factor on the Energy Harvesting for a Simple Biped Robot.

Autor: Wang, Fengxia
Předmět:
Zdroj: International Journal of Structural Stability & Dynamics; 2/15/2025, Vol. 25 Issue 3, p1-28, 28p
Abstrakt: To design walk-fast and energy-efficient robots, there has been lots of work in the last decade examining the locomotion dynamics of a passive biped. As the walking environment or system parameter changes, an energy use efficient robot may become inefficient. A possible approach to increase the energy efficiency is through the ability to harvest the energy used during the locomotion. The paper's main goal is to investigate the relations between walking speed, the locomotion energy consumption of a passive biped, and the ability to retrieve the lost energy as locomotion energy efficiency varies. Piezoelectric bimorphs were attached to the feet of the biped to harvest energy via exploiting the acceleration excitations induced vibrations at the instant foot lift and heel strike. It is found that as a foot-to-hip mass ratio increases, the stable periodic-1 (P1) walking gait becomes slower and more energy costing. Also it means more available energy to harvest, although the retrieved energy is much smaller compared to the locomotive energy. Once the foot-to-hip mass ratio passes the periodic doubling (PD) point, P1 walking gaits will become limped P2 walking gaits, and the high energy cost situation alleviates, which also means less available energy to harvest. On the other hand, if the foot-to-hip mass ratio is fixed and the slope angle increases, the walking will experience sequences of PD bifurcations, and the walking gaits go through P1, P2, P4, P8, and chaotic walking. As the walking gaits change, the average walking efficiency, average locomotion energy consumption, and average harvested energy grow as the slope becomes deeper. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index