Overcoming Challenges to Extracting and Sequencing Historical DNA to Support Primate Evolutionary Research and Conservation, with an Application to Galagos: Overcoming Challenges to Extracting and Sequencing Historical DNA to Support Primate Evolutionary Research and Conservation, with an Application to Galagos: A. Penna et al

Autor: Penna, Anna, Blair, Mary E., Lui, Hsiao-Lei, Peters, Elsa, Kistler, Logan, Pozzi, Luca
Zdroj: International Journal of Primatology; Dec2024, Vol. 45 Issue 6, p1375-1403, 29p
Abstrakt: The availability of genetic data from wild populations limits our understanding of primate evolution and conservation, particularly for small nocturnal species such as lorisiforms (galagos, lorises, angwantibos, and pottos). Emerging methods for recovering genomic DNA from historical museum specimens have been rarely used in primate studies. We aimed to optimize extraction and bioinformatics protocols to maximize the recovery of historical DNA to fill important geographic and taxonomic gaps, improve phylogenetic resolution, and inform conservation of Lorisiform primates. First, we compared the performance of two DNA extraction methods by using 238 specimens up to a hundred years old. We then selected 96 samples with the highest DNA yields for shotgun sequencing. To evaluate the impact of phylogenetic divergence in bioinformatic read mapping, we compared coverage depths when using human and three lorisiform reference mitogenomes. Based on whole genomic data, we performed metagenomics and microbial diversity analyses to assess the composition of potentially exogenous content. Lastly, based on the most geographically and taxonomically comprehensive sampling for the West African lorisiforms to date (19/32 currently recognized species), we performed phylogenetic inference using Maximum Likelihood. The results showed that older samples yield lower DNA concentration, with an optimized phenol-chloroform protocol outperforming a commercial kit. However, both extraction methods generated DNA in sufficient amount and quality for phylogenetic inference. Our reference bias comparisons showed that higher phylogenetic proximity between focal species and reference mitogenome increases coverage depth. The metagenomic analysis found human contamination in only one of 96 samples (1%), whereas ten of 96 (11%) samples showed nonnegligible levels of other exogenous contents, among which are certain blood parasites. We inferred low support for the monophyly of Asian and African Lorisids but confirmed the monophyly and previously suggested relationships among Galagid genera. Lastly, we found evidence of cryptic species diversity within the western dwarf galagos (genus Galagoides). Taken together, these results attest to the enormous potential of museomics to advance our understanding of galago evolution, ecology, and conservation, an approach that can be extended to other primate clades. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index