Innate immune control of influenza virus interspecies adaptation via IFITM3.

Autor: Denz, Parker J., Speaks, Samuel, Kenney, Adam D., Eddy, Adrian C., Papa, Jonathan L., Roettger, Jack, Scace, Sydney C., Rubrum, Adam, Hemann, Emily A., Forero, Adriana, Webby, Richard J., Bowman, Andrew S., Yount, Jacob S.
Zdroj: Nature Communications; 12/12/2024, Vol. 15 Issue 1, p1-11, 11p
Abstrakt: Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigate whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We find that IFITM3-deficient mice and human cells can be infected with low doses of avian influenza viruses that fail to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious virus dose threshold. Remarkably, influenza viruses passaged through Ifitm3−/− mice exhibit enhanced host adaptation, a result that is distinct from viruses passaged in mice deficient for interferon signaling, which exhibit attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates potentially zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses. This study highlights that IFITM3 deficiency lowers the minimum infectious dose of influenza virus, enhances adaptation of influenza viruses to a new host species, and broadly increases infection of human cells by avian and swine influenza viruses. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index