Autor: |
Brusly Solomon, A., Jims John Wessley, G., Ganesh, Madhu, Sharifpur, Mohsen, Rethinam, Renjith Singh |
Předmět: |
|
Zdroj: |
Heat Transfer; Jan2025, Vol. 54 Issue 1, p609-625, 17p |
Abstrakt: |
The present research deliberates the influence of anodization on the entropy reduction in heat pipes that have grooved wicks and are charged with anhydrous ammonia fluid. Entropy generation analysis indicates how much energy is squandered because of the poor heat transfer surface, and the entropy must be minimized at any cost for a better environment. Anodization was performed to form a thin porous layer with micro/nanostructured pores in the grooved heat pipe's (GHP's) interior surface. The test findings demonstrate that the anodized thin porous layer enhances capillary rise and accelerates heat transmission. The entropy generation was computed by utilizing the heat transfer between the evaporator and condenser of a GHP and the drop in pressure across it. The second‐law efficiency and overall entropy generation are also examined in this study. The findings demonstrate that for a GHP with a groove size of 400 µm (0.4 mm) and a thin porous covering, the lowest entropy generation owing to heat transfer across a heat pipe is 0.015 W/K and the overall entropy generation is 0.02 W/K. Also, the same anodized GHP receives a maximum second‐law efficiency of 89.12%. This investigation revealed that the thin porous coating through anodization is the prime reason for the entropy reduction in the heat pipe. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|