Autor: |
Kepka, Tomáš, Korbelář, Miroslav |
Předmět: |
|
Zdroj: |
Journal of Algebra & Its Applications; Jan2025, Vol. 24 Issue 1, p1-20, 20p |
Abstrakt: |
Let S be an additively idempotent semiring and M n (S) be the semiring of all n × n matrices over S. We characterize the conditions of when the semiring M n (S) is congruence-simple provided that the semiring S is either commutative or finite. We also give a characterization of when the semiring M n (S) is subdirectly irreducible for S being almost integral (i.e. x y + y x + x = x for all x , y ∈ S). In particular, we provide this characterization for the semirings S derived from the pseudo MV-algebras. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|