Polarity controlled ScAlN multi-layer transduction structures grown by molecular beam epitaxy.

Autor: Mondal, Shubham, Hershkovitz, Eitan, Baucom, Garrett, Hasan Tanim, Md Mehedi, Dabas, Shaurya, Chatterjee, Baibhab, Kim, Honggyu, Tabrizian, Roozbeh, Mi, Zetian
Předmět:
Zdroj: APL Materials; Nov2024, Vol. 12 Issue 11, p1-7, 7p
Abstrakt: We report on the molecular beam epitaxial growth and characterization of polarity-controlled single and multi-layer Scandium Aluminum Nitride (ScAlN) transduction structures grown directly on ScAlN templates deposited by physical vapor deposition (PVD) on Si(001) substrates. It is observed that direct epitaxial growth on PVD N-polar ScAlN leads to the flipping of polarity, resulting in metal (M)-polar ScAlN. By effectively removing the surface impurities, e.g., oxides, utilizing an in situ gallium (Ga)-assisted flushing technique, we show that high quality N-polar ScAlN epilayers can be achieved on PVD N-polar ScAlN templates. The polarity of ScAlN is confirmed by utilizing polarity-sensitive wet chemical etching and atomic-resolution scanning transmission electron microscopy. Through interface engineering, i.e., the controlled formation or removal of surface oxides, we have further demonstrated the ability to epitaxially grow an alternating tri-layer piezoelectric structure, consisting of N-polar, M-polar, and N-polar ScAlN layers. Such multi-layer, polarity-controlled ScAlN structures promise a manufacturable platform for the design and development of a broad range of acoustic and photonic devices. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index