Abstrakt: |
Influenza A viruses (IAVs), which belong to the Orthomyxoviridae family, are RNA viruses characterized by a segmented genome that allows them to evolve and adapt rapidly. These viruses are mainly transmitted by wild waterfowl. In this study, we investigated the evolutionary processes of H7Nx (H7N1, H7N2, H7N3, H7N4, H7N5, H7N6, H7N7, H7N8, H7N9) viruses, which pose a significant pandemic risk due to the known cases of human infection and their potential for rapid genetic evolution and reassortment. The complete genome sequences of H7Nx influenza viruses (n = 3239) were compared between each other to investigate their phylogenetic relationships and reassortment patterns. For the selected viruses, phylogenetic trees were constructed for eight genome segments (PB2, PB1, PA, HA, NP, NA, M, NS) to assess the genetic diversity and geographic distribution of these viruses. Distinct phylogenetic clades with remarkable geographic patterns were found for the different segments. While the viruses were consistently grouped by subtype based on the NA segment sequences, the phylogeny of the other segment sequences, with the exception of the NS segment, showed distinct grouping patterns based on geographic origin rather than formal subtype assignment. Reassortment events leading to complex phylogenetic relationships were frequently observed. In addition, multiple cases of previously undescribed reassortments between subtypes were detected, emphasizing the fluidity of H7Nx virus populations. These results indicate a high degree of genetic diversity and reassortment within H7Nx influenza viruses. In other words, H7Nx viruses exist as constantly changing combinations of gene pools rather than stable genetic lineages. [ABSTRACT FROM AUTHOR] |