Abstrakt: |
The balance between photosynthetic carbon accumulation and respiratory loss in plants varies depending on temperature. This leads to a situation where the increased need for carbon is not met when a certain temperature threshold is reached. Over the last two decades, temperature thresholds in carbon metabolism in autotrophic systems have been widely studied. However, it remains unclear how these thresholds manifest themselves in the natural growth of individual plant species. To address this issue, we used data from an extensive monitoring of the growth of peat moss Sphagnum riparium over 9 years in mires in Karelia (Russia). We measured the growth of shoots in sample plots and obtained 1609 estimates of growth rates during the monitoring period. Investigating the relationship between growth rate and temperature, we identified two distinct intervals in response to temperature. These two intervals are separated by the temperature threshold of 13.2 °C. The first interval, which covers 42% of the growing season, exhibits a strong exponential dependence of growth rate on temperature, with a coefficient Q10 = 4.01. This indicates that growth is most sensitive to changes in temperature within this range. In contrast, the second interval (58% of the growing season) shows a weaker dependence, with a Q10 coefficient of 1.21, suggesting that growth is less responsive to changes within this temperature range. The temperature threshold was found to be negatively related to May (r = −0.76; p = 0.018) and September (r = −0.78; p = 0.012) temperatures of the previous growing season, and together they best explain (r = −0.91; p = 0.0007) the temperature threshold. Overall, our findings suggest that the temperature threshold does exist in the growth of S. riparium and can be identified in different years. The negative correlation between temperature threshold and May and September temperatures from the previous year indicates that intervals in the growing season with temperatures near the temperature threshold have an impact on subsequent carbon balance and are particularly significant for the further growth and development of Sphagnum mosses. [ABSTRACT FROM AUTHOR] |