Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images.

Autor: Li, Zhengjie, Wu, Zhiwei, Zhu, Shihao, Hou, Xiang, Li, Shun
Předmět:
Zdroj: Forests (19994907); Nov2024, Vol. 15 Issue 11, p2002, 22p
Abstrakt: The understory fine dead fuel moisture content (DFMC) is an important reference indicator for regional forest fire warnings and risk assessments, and determining it on a large scale is a critical goal. It is difficult to estimate understory fine DFMC directly from satellite images due to canopy shading. To address this issue, we used canopy meteorology estimated by Landsat images in combination with explanatory variables to construct random forest models of in-forest meteorology, and then construct random forest models by combining the meteorological factors and explanatory variables with understory fine DFMC obtained from the monitoring device to (1) investigate the feasibility of Landsat images for estimating in-forest meteorology; (2) explore the feasibility of canopy or in-forest meteorology and explanatory variables for estimating understory fine DFMC; and (3) compare the effects of each factor on model accuracy and its effect on understory fine DFMC. The results showed that random forest models improved in-forest meteorology estimation, enhancing in-forest relative humidity, vapor pressure deficit, and temperature by 50%, 34%, and 2.2%, respectively, after adding a topography factor. For estimating understory fine DFMC, models using vapor pressure deficit improved fit by 10.2% over those using relative humidity. Using in-forest meteorology improved fits by 36.2% compared to canopy meteorology. Including topographic factors improved the average fit of understory fine DFMC models by 123.1%. The most accurate model utilized in-forest vapor pressure deficit, temperature, topographic factors, vegetation index, precipitation data, and seasonal factors. Correlations indicated that slope, in-forest vapor pressure deficit, and slope direction were most closely related to understory fine DFMC. The regional understory fine-grained DFMC distribution mapped according to our method can provide important decision support for forest fire risk early warning and fire management. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index