Abstrakt: |
Sesame (Sesamum indicum L., flora of China) is an essential oil crop in China, but its growth and development are affected by climate change. To cope with the impacts of climate change on sesame cultivation, we used the Maximum Entropy (MaxEnt) model to analyze the bioclimatic variables of climate suitability of sesame in China and predicted the suitable area and trend of sesame in China under current and future climate scenarios. The results showed that the MaxEnt model prediction was excellent. The most crucial bioclimatic variable influencing the distribution of sesame was max temperature in the warmest month, followed by annual mean temperature, annual precipitation, mean diurnal range, and precipitation of the driest month. Under the current climate scenario, the suitable areas of sesame were widely distributed in China, from south (Hainan) to north (Heilongjiang) and from east (Yellow Sea) to west (Tibet). The area of highly suitable areas was 64.51 × 104 km2, accounting for 6.69% of the total land area in China, and was primarily located in mainly located in southern central Henan, eastern central Hubei, northern central Anhui, northern central Jiangxi, and eastern central Hunan. The area of moderately suitable areas and lowly suitable areas accounted for 17.45% and 25.82%, respectively. Compared with the current climate scenario, the area of highly and lowly suitable areas under future climate scenarios increased by 0.10–11.48% and 0.08–8.67%, while the area of moderately suitable areas decreased by 0.31–23.03%. In addition, the increased highly suitable areas were mainly distributed in northern Henan. The decreased moderately suitable areas were mainly distributed in Heilongjiang, Jilin, and Liaoning. This work is practically significant for optimizing the regional layout of sesame cultivation in response to future climate conditions. [ABSTRACT FROM AUTHOR] |