Autor: |
Fan, Siyao, Hu, Qian, Liu, Qi, Xu, Wenman, Wang, Zixin, Huang, Yu, Zhang, Yang, Ji, Wenxiu, Dong, Weiwei |
Předmět: |
|
Zdroj: |
Agriculture; Basel; Nov2024, Vol. 14 Issue 11, p1880, 20p |
Abstrakt: |
The ginseng industry's reliance on chemicals for fertilizer and pesticides has adversely affected the environment and decreased the quality of ginseng; therefore, microbial inoculum is an effective way to restore the damaged soil in ginseng fields. To investigate the effects of plant growth-promoting rhizobacteria (PGPR) and spent mushroom substrate (SMS) on soil and plant quality in ginseng, high throughput sequencing was performed to examine the microbial community structures in ginseng rhizosphere soil. All treatments significantly increased soil nutrient, enzyme activity, and ginseng biomass compared to control (p < 0.05). The combination of PGPR and SMS notably enhanced soil enzyme activities: urease (7.29%), sucrase (29.76%), acid phosphatase (13.24%), and amylase (38.25%) (p < 0.05). All treatments had different effects on ginseng rhizosphere soil microbial diversity. Significantly, the combination treatments enhanced microbial diversity by increasing the abundance of beneficial bacteria such as Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Plectosphaerella, meanwhile suppressing harmful Klebsiella. The relative abundance of Fusarium was reduced to some extent compared with the application of SMS alone. The soil organic matter, available potassium, available phosphorus, and alkaline nitrogen, as key factors, influenced microbial community structures. Overall, the combination of PGPR and SMS positively impacted the rhizosphere environment and ginseng plant quality. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|