Mixed Reality-Based Concrete Crack Detection and Skeleton Extraction Using Deep Learning and Image Processing.

Autor: Shojaei, Davood, Jafary, Peyman, Zhang, Zezheng
Zdroj: Electronics (2079-9292); Nov2024, Vol. 13 Issue 22, p4426, 23p
Abstrakt: Advancements in image processing and deep learning offer considerable opportunities for automated defect assessment in civil structures. However, these systems cannot work interactively with human inspectors. Mixed reality (MR) can be adopted to address this by involving inspectors in various stages of the assessment process. This paper integrates You Only Look Once (YOLO) v5n and YOLO v5m with the Canny algorithm for real-time concrete crack detection and skeleton extraction with a Microsoft HoloLens 2 MR device. The YOLO v5n demonstrates a superior mean average precision (mAP) 0.5 and speed, while YOLO v5m achieves the highest mAP 0.5 0.95 among the other YOLO v5 structures. The Canny algorithm also outperforms the Sobel and Prewitt edge detectors with the highest F1 score. The developed MR-based system could not only be employed for real-time defect assessment but also be utilized for the automatic recording of the location and other specifications of the cracks for further analysis and future re-inspections. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index