Efficiency Improvement on Indium Tin Oxide Films for Dye-Sensitized Solar Cell Using Oxygen Plasma by Bias-Magnetron RF Sputtering Process.

Autor: Poonthong, Wittawat, Mungkung, Narong, Tanitteerapan, Tanes, Maneepen, Theerapong, Songruk, Apidat, Tunlasakun, Khanchai, Siricharoenpanich, Anumut, Arunrungrusmi, Somchai, Kasayapanand, Nat
Zdroj: Energies (19961073); Nov2024, Vol. 17 Issue 22, p5585, 21p
Abstrakt: Dye-sensitized solar cells (DSSCs) are among the most widely studied thin-film solar cells because of their cost-effectiveness, low toxicity, and simple fabrication method. However, there is still much scope for replacing current DSSC materials due to their high cost, low volume, and lack of long-term stability. Accordingly, indium tin oxide (ITO)-nanorod films were fabricated by electron (E)-beam evaporation using the glancing angle deposition method in this study. Then, the ITO-nanorod was treated with oxygen plasma via a bias-magnetron radio-frequency (RF) sputtering process to improve the efficiency of DSSCs under a varying gas flow rate of 20, 40, 60, 80, and 100 sccm. The field emission scanning electron microscopy (FE-SEM) investigation of the ITO film structure revealed that the obtained nanorod structures have slightly different diameters. At the same time, an increase in the oxygen flow rate resulted in a rougher film surface structure. In this, the lower sheet resistance was received because of rougher morphology. When comparing the DSSCs efficiency (η) test results, we found that at a gas flow rate of 100 sccm, the highest efficiency value showed 9.5%. On the other hand, the ITO-nanorod without plasma treatment exhibited the lowest η. Hence, plasma technology can be practically applied to improve the η of DSSC devices. This study will be a prototype of a highly advanced solar cell manufacturing method for the solar cell industry. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index