Weak positive solutions to singular quasilinear elliptic equation.

Autor: Souissi, Chouhaïd, Hsini, Mounir, Irzi, Nawal, Hadba, Wakaa Ali
Předmět:
Zdroj: Georgian Mathematical Journal; Dec2024, Vol. 31 Issue 6, p1033-1048, 16p
Abstrakt: In this paper, we study the existence of multiple solutions for the singular problem { a ⁢ (x , u , ∇ ⁡ u) - div ⁢ (b ⁢ (x , u , ∇ ⁡ u)) = u - α + λ ⁢ c ⁢ (x , u) in ⁢ Ω , u > 0 in ⁢ Ω , u = 0 on ⁢ ℝ n ∖ Ω , where Ω ⊂ ℝ n (n ≥ 3) is a bounded domain with C 1 boundary, λ is a positive parameter, 0 < α ≤ 1 < p ≤ n and p * = n ⁢ p n - p is the critical exponent for Sobolev embedding. Using the fibering maps and the Nehari manifold, we prove the existence of at least two positive solutions for all values of the parameter λ belonging to an open bounded interval of ℝ + . [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index