Autor: |
Bahi, O., Khellaf, A., Guebbai, H. |
Předmět: |
|
Zdroj: |
Nonlinear Dynamics & Systems Theory; 2024, Vol. 24 Issue 5, p431-441, 11p |
Abstrakt: |
The article explores the spectral properties of a non-self-adjoint integral-differential operator defined on an unbounded domain under Dirichlet-type conditions. Using pseudo-spectral theory, the study demonstrates that the operator's spectrum is localized in the real numbers. It focuses on the spectral analysis of convection-diffusion-reaction operators to assess stability and perturbation propagation, applying pseudo-spectral techniques by dividing the spatial domain. |
Databáze: |
Complementary Index |
Externí odkaz: |
|