Abstrakt: |
Background/Objectives: The microphthalmia-associated transcription factor (Mitf) has been found to play an important role in eye development, structure, and function. The Mitf gene is responsible for controlling cellular processes in a range of cell types, contributing to multiple eye development processes. In this review, we survey what is now known about the impact of Mitf on eye structure and function in retinal disorders. Several mutations in the human and mouse Mitf gene are now known, and the effects of these on eye phenotype are addressed. We discuss the importance of Mitf in regulating ion transport across the retinal pigment epithelium (RPE) and the vasculature of the eye. Methods: The literature was searched using the PubMed, Scopus, and Google Scholar databases. Fundus and Optical Coherence Tomography (OCT) images from mice were obtained with a Micron IV rodent imaging system. Results: Defects in neural-crest-derived melanocytes resulting from any Mitf mutations lead to hypopigmentation in the eye, coat, and inner functioning of the animals. While many Mitf mutations target RPE cells in the eye, fewer impact osteoclasts at the same time. Some of the mutations in mice lead to microphthalmia, and ultimately vision loss, while other mice show a normal eye size; however, the latter, in some cases, show hypopigmentation in the fundus and the choroid is depigmented and thickened, and in rare cases Mitf mutations lead to progressive retinal degeneration. Conclusions: The Mitf gene has an impact on the structure and function of the retina and its vasculature, the RPE, and the choroid in the adult eye. [ABSTRACT FROM AUTHOR] |