Abstrakt: |
Background/Objectives: For genomic selection to enhance the efficiency of broiler production, finding SNPs and candidate genes that define the manifestation of main selected traits is essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity traits of roosters from a chicken F2 resource population (n = 152). Methods: The population was obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits of interest and economic importance. Results: At the threshold value of p < 9.2 × 10−7, 83 SNPs associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and its components). Moreover, 34 SNPs were associated with a group of three or more traits, including 15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators. Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2. Conclusions: The found SNPs and candidate genes can serve as genetic markers for growth and meat performance characteristics in chicken breeding in order to achieve genetic improvement in broiler production. [ABSTRACT FROM AUTHOR] |