Abstrakt: |
Airborne microplastics (MPs), measuring less than five millimeters in size, have gained substantial attention due to their omnipresence in the environment, including the atmosphere, and their potential impact on both human health and ecosystems. This comprehensive literature review synthesizes current knowledge on the sources, distribution, and health risks associated with airborne MPs. The significant rise in global plastic production has concerns about its harmful effects on the environment and human health. Microplastics, being pervasive across various ecosystems, can traverse the food chain. They also have the potential to disperse through the air. Various studies have emphasized the role of airborne MPs as carriers for toxic substances, impacting environmental and human health. This review delineates the sources of atmospheric MPs, stemming from primary sources such as commercial products and secondary sources from larger plastic degradation. Moreover, a comprehensive understanding of MPs' size, shape, and polymeric composition is crucial for a thorough assessment of their potential impact on human health. Notably, while airborne MPs tend to encompass a variety of shapes, including fibers, fragments, and granules, their health implications vary. Fibrous MPs, despite their visibility, raise concerns due to entanglement and prolonged residence within organisms. However, research suggests that most of the airborne MPs consist of smaller particles, highlighting the need for further investigation into their impact on health. Although advancements have been made in understanding airborne MPs, substantial gaps remain. Standardized sampling methods, comprehensive risk assessments, and long-term epidemiological studies are essential to unravel the health implications of prolonged exposure to these omnipresent particles. This literature review underlines the need for continued research to fully comprehend the sources, distribution, and health risks posed by airborne microplastics, offering insights into potential mitigation strategies and future research directions. [ABSTRACT FROM AUTHOR] |