Abstrakt: |
The rotor of PMa-BSynRM, with its multi-layer barriers and permanent magnet, poses a challenge in the design process as both torque system and suspension force system performance need to be considered comprehensively. To solve this problem, a multi=objective optimization method for the rotor structure of PMa-BSynRM is proposed in this paper. Firstly, the harmonic characteristics of PMa-BSynRM air gap magnetic field are analyzed based on the magnetic potential and magnetic permeability method. The expression for suspension force under the coupled magnetic field is derived by combining Maxwell tensor method. This analysis reveals the relationship between magnetic field characteristics and suspension force, providing guidance for subsequent optimization design. Secondly, through the analysis of the rotor structure, the macroscopic parameters related to the micro and detailed geometric optimization of the PMa-BSynRM rotor are proposed. Based on these macroscopic parameters, the response surface method and dual-population-based co-evolutionary algorithm (DPCA) are applied to realize a compromise among the optimization objectives. Finally, the proposed optimization method is comprehensively analyzed through simulation analysis and prototype experiment. The simulation and experimental results demonstrate a reduction of 51% in optimized torque ripple and 74% in suspension force ripple, as well as a decrease of 3.2° in the suspension force error angle. After optimization, the performance of the motor torque and suspension force system is significantly improved, thus verifying the effectiveness and superiority of the proposed optimization method. [ABSTRACT FROM AUTHOR] |