Abstrakt: |
Selection as a factor increases the frequency of positive mutations in some subpopulations and creates selection signatures in the genome. Identifying the selection signatures in animals aimed at promoting economic traits and reducing diseases is one of the main and most challenging research areas in population genetics. This study aimed to conduct an extensive genome scan using single nucleotide polymorphisms (SNPs) to identify genomic regions under positive selection between diseased and healthy Holstein cattle populations. The data included 145 Holstein cows from Foka. These cows were genotyped using Illumina 30K chips. The cows were divided into diseased (45 cows) and healthy (100 cows) groups. FST and XP-EHH statistics were used in this study to identify genomic regions under selection. The genes identified by FST statistics in both diseased and healthy populations included RAB37, ZC3H10, ESR1, HSD17B6, KCNC4, and ERBB3. Genes identified by XP-EHH statistics in both diseased and healthy populations included AK1, ATP8A1, BTBD1, C1GALT1, CCDC6, CEP295, CLGN, CLSTN2, EHHADH, ERBB4, FRK, GRID2, GRIP1, and LRP6. Most of the genes identified in this study were related to immunity, diseases such as cancer, lactation, skeletal muscles, estrous cycle, feed consumption, sperm adhesion, and growth, which are among the important biological traits and characteristics of living organisms. Further research using an increased sample size in the population will provide a better understanding of candidate genes for ion disease in cattle. Moreover, the design of successful breeding programs will help reduce the costs associated with this disease. [ABSTRACT FROM AUTHOR] |