Upper bounds for the relaxed area of S¹ -valued Sobolev maps and its countably subadditive interior envelope.
Autor: | Bellettini, Giovanni, Scala, Riccardo, Scianna, Giuseppe |
---|---|
Předmět: | |
Zdroj: | Revista Mathematica Iberoamericana; 2024, Vol. 40 Issue 6, p2135-2178, 44p |
Abstrakt: | Given a connected bounded open Lipschitz set Ω ⊂ R², we show that the relaxed Cartesian area functional A̅ (u,Ω) of a map u ∈ W1,1(Ω;S¹) is finite, and we provide a useful upper bound for its value. Using this estimate, we prove a modified version of a De Giorgi conjecture adapted to W1,1(Ω;S¹), on the largest countably subadditive set function ... (u,⋅) smaller than or equal to A̅ (u,⋅). [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: |