Right ventricular performance during acute hypoxic exercise.

Autor: Forbes, Lindsay M., Bull, Todd M., Lahm, Tim, Sisson, Tyler, O'Gean, Katie, Lawley, Justin S., Hunter, Kendall, Levine, Benjamin D., Lovering, Andrew, Roach, Robert C., Subudhi, Andrew W., Cornwell, William K.
Předmět:
Zdroj: Journal of Physiology; Nov2024, Vol. 602 Issue 21, p5523-5537, 15p
Abstrakt: Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non‐invasive normoxic (fraction of inspired oxygen (FiO2${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$) = 0.21) and isobaric hypoxic (FiO2${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake (V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan–Ganz or conductance catheterization to quantify RV performance via pressure–volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ (FiO2${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ = 0.12). Median (interquartile range) values for non‐invasive V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax, and end‐systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular–arterial coupling was maintained during normoxic exercise at 50% V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$. During submaximal exercise at 50% of hypoxic V̇O2max${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$, ventricular–arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an FiO2${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ = 0.12 and the associated increase in PA pressures. Key points: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions.During submaximal exercise, ventricular–arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained.These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index