Photon counting CT clinical adoption, integration, and workflow.

Autor: Dane, Bari, Froemming, Adam, Schwartz, Fides R., Toshav, Aran, Ramirez-Giraldo, Juan Carlos, Ananthakrishnan, Lakshmi
Předmět:
Zdroj: Abdominal Radiology; Dec2024, Vol. 49 Issue 12, p4600-4609, 10p
Abstrakt: Photon counting CT was recently introduced into clinical practice [Rajendran K, Petersilka M, Henning A, Shanblatt ER, Schmidt B, Flohr TG, Ferrero A, Baffour F, Diehn FE, Yu L, Rajiah P, Fletcher JG, Leng S, McCollough CH. First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 2022;303(1):130–138. doi: https://doi.org/10.1148/radiol.212579]. Photon counting detectors (PCD) afford better spatial resolution, radiation dose efficiency, and iodine contrast-to-noise than EID-CT [Leng S, Bruesewitz M, Tao S, Rajendran K, Halaweish AF, Campeau NG, Fletcher JG, McCollough CH. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019;39(3):729–743. doi: https://doi.org/10.1148/rg.2019180115); (Leng S, Rajendran K, Gong H, Zhou W, Halaweish AF, Henning A, Kappler S, Baer M, Fletcher JG, McCollough CH. 150-mum Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Invest Radiol 2018;53(11):655–662. doi: https://doi.org/10.1097/RLI.0000000000000488)(Booij R, van der Werf NR, Dijkshoorn ML, van der Lugt A, van Straten M. Assessment of Iodine Contrast-To-Noise Ratio in Virtual Monoenergetic Images Reconstructed from Dual-Source Energy-Integrating CT and Photon-Counting CT Data. Diagnostics (Basel) 2022;12(6). doi: https://doi.org/10.3390/diagnostics12061467); (Sawall S, Klein L, Amato C, Wehrse E, Dorn S, Maier J, Heinze S, Schlemmer HP, Ziener CH, Uhrig M, Kachelriess M. Iodine contrast-to-noise ratio improvement at unit dose and contrast media volume reduction in whole-body photon-counting CT. Eur J Radiol 2020;126:108909. doi: https://doi.org/10.1016/j.ejrad.2020.108909] while also maintaining multienergy CT (MECT) capabilities[Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda J, Schmidt B. Photon-counting CT review. Phys Med 2020;79:126–136. doi: https://doi.org/10.1016/j.ejmp.2020.10.030]. This article will review the clinical adoption of PCD-CT including protocol development, clinical applications, clinical integration and workflow considerations. Protocol development is institution specific and involves collaborative decision-making among radiologists, physicists, and technologists. Key PCD clinical applications include radiation exposure reduction, intravenous contrast volume reduction, and improved lesion conspicuity. Patients who would most benefit from these improvements may preferentially be scanned with PCD CT. With numerous available reconstructions, radiologists should be strategic in the series sent to PACS for interpretation and routinely sending spectral series to PACS can facilitate integration with clinical workflow. The Society of Abdominal Radiology PCD Emerging Technology Commission endorsed this article. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index