Accelerated Electrons Transfer and Synergistic Interplay of Co and Ge Atoms (111 Crystal Plane) Activated by Anchoring Nano Spinel Structure Co 2 GeO 4 onto Carbon Cloth Composite Electrocatalyst for Highly Enhanced Hydrogen Evolution Reaction.

Autor: Chen, Chen, Zhu, Jiarui, Cheng, Ting, Wu, Fei, Xie, Jun, He, Dawei, Dai, Youzhi, Zhang, Xiao, Zhao, Le, Wei, Zhongsheng
Předmět:
Zdroj: Catalysts (2073-4344); Oct2024, Vol. 14 Issue 10, p664, 17p
Abstrakt: The electrochemical hydrogen evolution reaction (HER) was considered to be a promising strategy for future clean energy. In this work, a composite electrocatalyst (designated as CGO36@CC) was synthesized through anchoring of nano spinel structure Co2GeO4 onto carbon cloth fibers and exhibited outstanding electrocatalytic performance for HERs in an alkaline medium. The characterization outcome established that, after 36 h of hydrothermal reaction, nano spinel structure Co2GeO4 particles (exposed abundant 111 crystal planes) were stably loaded onto a carbon cloth fiber surface, and this structural configuration facilitated the electrons transferring between each other. In addition, the electrochemical analysis revealed that the incorporation of nano spinel structure Co2GeO4 and carbon cloth significantly augmented the electrochemical activity value of the composite and efficiently enhanced the HER performance. Notably, the overpotential was merely 96 mV at 10 mA·cm−2 current density, and the Tafel slope was only 48.9 mV·dec−1. Moreover, CGO36@CC displayed remarkable catalytic activity and sustained HER catalytic stability. The theoretical catalytic prowess of CGO36@CC stemmed from the collaborative influence of germanium and cobalt atoms within the exposed 111 crystal plane of the Co2GeO4 molecular framework. The amalgamation of Co2GeO4 with carbon cloth fiber conferred upon the composite electrocatalyst both superior theoretical catalytic activity and enhanced electron transfer capability. This work provides a novel strategy for exploring a highly efficient composite electrocatalyst combined transition metal with carbon material to accelerate the HER activity. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje