Abstrakt: |
Rare-earth-metal-based materials have emerged as frontrunners in the quest for high-performance hydrogen storage solutions, offering a paradigm shift in clean energy technologies. This comprehensive review delves into the cutting-edge advancements, challenges, and future prospects of these materials, providing a roadmap for their development and implementation. By elucidating the fundamental principles, synthesis methods, characterization techniques, and performance enhancement strategies, we unveil the immense potential of rare-earth metals in revolutionizing hydrogen storage. The unique electronic structure and hydrogen affinity of these elements enable diverse storage mechanisms, including chemisorption, physisorption, and hydride formation. Through rational design, nanostructuring, surface modification, and catalytic doping, the hydrogen storage capacity, kinetics, and thermodynamics of rare-earth-metal-based materials can be significantly enhanced. However, challenges such as cost, scalability, and long-term stability need to be addressed for their widespread adoption. This review not only presents a critical analysis of the state-of-the-art but also highlights the opportunities for multidisciplinary research and innovation. By harnessing the synergies between materials science, nanotechnology, and computational modeling, rare-earth-metal-based hydrogen storage materials are poised to accelerate the transition towards a sustainable hydrogen economy, ushering in a new era of clean energy solutions. [ABSTRACT FROM AUTHOR] |