Contextually aware intelligent control agents for heterogeneous swarms.

Autor: Hepworth, Adam J., Hussein, Aya S. M., Reid, Darryn J., Abbass, Hussein A.
Zdroj: Swarm Intelligence; Dec2024, Vol. 18 Issue 4, p275-310, 36p
Abstrakt: An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain simplicity in their decision models, whilst increasing the swarm's abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm control intelligent agent (shepherd). We first use swarm metrics to recognise the type of swarm that the shepherd interacts with, then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. contents) of the control agent without sacrificing the low computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index