Autor: |
Nasiruzzaman, Md., Dilshad, Mohammad, Mohiuddine, S. A., Albalawi, Bader Mufadhi Eid, Ajmal, Mohammad Rehan |
Zdroj: |
Journal of Inequalities & Applications; 10/25/2024, Vol. 2024 Issue 1, p1-21, 21p |
Abstrakt: |
In this paper, we attempt to use the Dunkl analog to study the convergence properties of q-Phillips operators by using the q-Appell polynomials. By applying the new sequences of continuous functions ν s , q (z) = (z − 1 2 [ s ] q ) ϱ on [ 0 , ∞) , we construct an improved version of the q-Phillips operators. We calculate the qualitative outcomes in weighted Korovkin spaces to better understand the Phillips operators' uniform convergence results. We obtain the approximation properties by use of the modulus of continuity and functions belonging to the Lipschitz class. Moreover, we give some direct theorems for the function belonging to Peetre's K-functional. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|