The effects of Sb/Te ratio on crystallization kinetics in Ge-rich GeSbTe phase-change materials.

1) upon annealing leads to the direct formation of a GST hexagonal phase featuring a high growth speed, bypassing the cubic metastable phase. Combined with Ge enrichment, the increased value of the activation energy of the nucleation of Sb / Te > --> 1 GGST alloys ensures a high stability of the amorphous phase. Finally, nitrogen introduction further stabilizes the system against the crystallization, without compromising the high crystalline growth speed and the formation of the stable GST hexagonal phase in alloys with Sb / Te > --> 1. These results demonstrate the possibility to tune the crystalline structure of the segregated phases in Ge-rich GeSbTe alloys, combining the stability at high temperature of the amorphous phase with the high crystallization speed and uniformity (with larger grains) of a targeted GST phase. [ABSTRACT FROM AUTHOR] -->
: Copyright of Journal of Applied Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Autor: Daoudi, O., Nolot, E., Mazel, Y., Dupraz, M., Roussel, H., Fillot, F., Le, V.-H., Dartois, M., Tessaire, M., Renevier, H., Navarro, G.
Předmět:
Zdroj: Journal of Applied Physics; 10/21/2024, Vol. 136 Issue 15, p1-8, 8p
Abstrakt: The development of Ge-rich GeSbTe (GGST) alloys significantly enhanced the high-temperature stability required for Phase-Change Memory technology. Previous studies on Ge enrichment in GeSbTe (GST) materials with Sb-over-Te ratio lower than one (Sb / Te < 1) highlighted the segregation into cubic Ge and cubic GST phases. Such a segregated cubic GST phase is metastable and presents a polycrystalline structure with disordered grain boundaries that could lead to structural relaxation and then to drift phenomena. In this work, using resistivity measurements, Raman spectroscopy, and in situ x-ray diffraction analyses, we demonstrate for the first time to our knowledge that GGST with Sb/Te higher than one (Sb / Te > --> 1) upon annealing leads to the direct formation of a GST hexagonal phase featuring a high growth speed, bypassing the cubic metastable phase. Combined with Ge enrichment, the increased value of the activation energy of the nucleation of Sb / Te > --> 1 GGST alloys ensures a high stability of the amorphous phase. Finally, nitrogen introduction further stabilizes the system against the crystallization, without compromising the high crystalline growth speed and the formation of the stable GST hexagonal phase in alloys with Sb / Te > --> 1. These results demonstrate the possibility to tune the crystalline structure of the segregated phases in Ge-rich GeSbTe alloys, combining the stability at high temperature of the amorphous phase with the high crystallization speed and uniformity (with larger grains) of a targeted GST phase. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index