Abstrakt: |
The growing global food demand, coupled with the limitations of traditional pest control methods, has driven the search for innovative and sustainable solutions in agricultural pest management. In this review, we highlight polymeric nanocarriers for their potential to deliver double-stranded RNA (dsRNA) and control pests through the gene-silencing mechanism of RNA interference (RNAi). Polymer-dsRNA systems have shown promise in protecting dsRNA, facilitating cellular uptake, and ensuring precise release. Despite these advances, challenges such as scalability, cost-efficiency, regulatory approval, and public acceptance persist, necessitating further research to overcome these obstacles and fully unlock the potential of RNAi in sustainable agriculture. Application of RNAi-based technology for crop pest control is hampered by the lacking of efficient system for the delivery of dsRNA molecules to pests or plants. Here, the authors review polymer systems for dsRNA delivery and provide perspectives on their application in sustainable agriculture production. [ABSTRACT FROM AUTHOR] |