Abstrakt: |
Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time prediction of forging outcomes. Initially, a simulation-based surrogate model is developed to replicate key process characteristics related to the billet, enabling prediction of geometry, deformation field, and forging load after an upsetting operation. Subsequently, this model is integrated with a mass-spring-damper model representing the behavior of forging machine and tools. This integration enables the prediction of blow efficiency and energy distribution after each blow, including plastic, elastic, damping, and frictional energy of the upsetting operation. The approach is validated by comparing predictions with experimental results. The coupled model outperformed Finite Element Method (FEM) predictions, exhibiting mean absolute errors (MAE) below 0.1 mm and mean absolute percentage errors (MAPE) below 1% in geometry predictions. Deformation field predictions showed errors below 0.05 mm/mm, and load-displacement curves closely matched experimental data. Blow efficiency predictions aligned well with experimental results, demonstrating a mean absolute error below 1.1%. The observed energy distribution correlated with literature findings, underscoring the model’s fidelity. The proposed methodology presents a promising approach for accurate real-time prediction of forging outcomes. [ABSTRACT FROM AUTHOR] |