Abstrakt: |
Alcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the production of kiwifruits, which have abundantly valuable polyphenols. However, knowledge about the protective effects of polyphenol-enriched extract from TIK against ALD is still lacking, which ultimately restricts their application as value-added functional products. To promote their potential applications, phenolic compounds from TIK and their corresponding mature fruits were compared, and their protective effects against ALD were studied in the present study. The findings revealed that TIK possessed extremely high levels of total phenolics (116.39 ± 1.51 mg GAE/g DW) and total flavonoids (33.88 ± 0.59 mg RE/g DW), which were about 7.4 times and 4.8 times greater than those of their corresponding mature fruits, respectively. Furthermore, the level of major phenolic components in TIK was measured to be 29,558.19 ± 1170.58 μg/g DW, which was about 5.4 times greater than that of mature fruits. In particular, neochlorogenic acid, epicatechin, procyanidin B1, and procyanidin B2 were found as the predominant polyphenols in TIK. In addition, TIK exerted stronger in vitro antioxidant and anti-inflammatory effects than those of mature fruits, which was probably because of their higher levels of polyphenols. Most importantly, compared with mature fruits, TIK exhibited superior hepatoprotective effects on alcohol-induced liver damage in mice. The administration of polyphenol-enriched extract from TIK (YK) could increase the body weight of mice, reduce the serum levels of ALP, AST, and ALT, lower the levels of hepatic TG and TC, and diminish lipid droplet accumulation and hepatic tissue damage. In addition, the treatment of YK could also significantly restore the levels of antioxidant enzymes (e.g., SOD and CAT) in the liver and lower the levels of hepatic proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α), indicating that YK could effectively ameliorate ALD in mice by reducing hepatic oxidative stress and hepatic inflammation. Collectively, our findings can provide sufficient evidence for the development of TIK and their extracts as high value-added functional products for the intervention of ALD. [ABSTRACT FROM AUTHOR] |