Abstrakt: |
Background: Previous research introduced V-PFCRC as an effective spot urinary dilution adjustment method for various metal analytes, including the major environmental toxin arsenic. V-PFCRC normalizes analytes to 1 g/L creatinine (CRN) by adopting more advanced power-functional corrective equations accounting for variation in exposure level. This study expands on previous work by examining the impacts of age and sex on corrective functions. Methods: Literature review of the effects of sex and age on urinary dilution and the excretion of CRN and arsenic. Data analysis included a Data Set 1 of 5,752 urine samples and a partly overlapping Data Set 2 of 1,154 combined EDTA blood and urine samples. Both sets were classified into age bands, and the means, medians, and interquartile ranges for CRN and TWuAs in uncorrected (UC), conventionally CRN-corrected (CCRC), simple power-functional (S-PFCRC), sex-aggregated (V-PFCRC SA), and sex-differentiated V-PFCRC SD modes were compared. Correlation analyses assessed residual relationships between CRN, TWuAs, and age. V-PFCRC functions were compared across three numerically similar age groups and both sexes. The efficacy of systemic dilution adjustment error compensation was evaluated through power-functional regression analysis of residual CRN and the association between arsenic in blood and all tested urinary result modes. Results: Significant sex differences in UC and blood were neutralized by CCRC and reduced by V-PFCRC. Age showed a positive association with blood arsenic and TWuAs in all result modes, indicating factual increments in exposure. Sex-differentiated V-PFCRC best matched the sex-age kinetics of blood arsenic. V-PFCRC formulas varied by sex and age and appeared to reflect urinary osmolality sex-age-kinetics reported in previous research. V-PFCRC minimized residual biases of CRN on TWuAs across all age groups and sexes, demonstrating improved standardization efficacy compared to UC and CCRC arsenic. Interpretation: Sex differences in UC and CCRC arsenic are primarily attributable to urinary dilution and are effectively compensated by V-PFCRC. While the sex and age influence on V-PFCRC formulas align with sex- and age-specific urinary osmolality and assumed baseline vasopressor activities, their impact on correction validity for entire collectives is minimal. Conclusion: The V-PFCRC method offers a robust correction for urinary arsenic dilution, significantly reducing systemic dilution adjustment errors. Its application in various demographic contexts enhances the accuracy of urinary biomarker assessments, benefiting clinical and epidemiological research. V-PFCRC effectively compensates for sex differences in urinary arsenic. Age-related increases in TWuAs are exposure-related and should be additionally accounted for by algebraic normalization, covariate models, or standard range adjustments. [ABSTRACT FROM AUTHOR] |