Abstrakt: |
Contrary to the southern Appalachians, where Alleghanian magmatism is widespread and well documented, the expressions of magmatism in the Canadian Appalachians are limited. In this study, a suite of leucocratic dykes from the Cape Spencer area in southern New Brunswick, Canada, were investigated to determine the nature, timing and source of these magmas using zircon and monazite U-Pb geochronology, whole-rock geochemistry and Nd-Hf isotopes. An LA-ICP-MS U-Pb monazite Alleghanian age of 273.7 ± 1.3 Ma obtained for these dykes constitutes a new example of magmatism in the northern segment of the orogen, where significant strike-slip movement and reheating have been the primary markers of the Alleghanian Orogeny. These metaluminous leucocratic dykes are enriched in light rare elements, U and Th; depleted in high-field strength elements (HFSE; Nb, P, Ti); and have slight negative Europium anomalies [(Eu/Eu*)N = 0.72–0.95]. All the dykes samples have negative εNd(t) values (−9.76 to −5.7), negative εHf(t) values (−1.8 to −1.0) and Mesoproterozoic Nd depleted-model ages (TDM = 1371–1618 Ma). The geochemical and isotopic characteristics suggest that the dykes were formed by the partial melting of lower crust that assimilated Meguma metasedimentary rocks and/or Avalonian sedimentary rocks, following terminal subduction of the Rheic Ocean and thermal re-equilibration during the Alleghanian orogeny. The effects of the closure of the Rheic Ocean in the oblique collision between composite Laurentia and Gondwana were, to a certain extent, accommodated along the Minas Fault Zone, where magmatism and regional fluid flow were concentrated. [ABSTRACT FROM AUTHOR] |