Cerebral Proteomic Changes in the rTg-D Rat Model of Cerebral Amyloid Angiopathy Type-2 With Cortical Microhemorrhages and Cognitive Impairments.

Autor: Schrader, Joseph M, Majchrzak, Mark, Xu, Feng, Lee, Hedok, Agostinucci, Kevin, Davis, Judianne, Benveniste, Helene, Van Nostrand, William E
Předmět:
Zdroj: Neuroscience Insights; 10/8/2024, p1-14, 14p
Abstrakt: Cerebral amyloid angiopathy (CAA) is a common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a novel transgenic rat model (rTg-D) that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops arteriolar CAA type-2. Here, we show that deposition of fibrillar Aβ promotes arteriolar smooth muscle cell loss and cerebral microhemorrhages that can be detected by magnetic resonance imaging and confirmed by histopathology. Aged rTg-D rats also present with cognitive deficits. Cerebral proteomic analyses revealed 241 proteins that were significantly elevated with an increase of >50% in rTg-D rats presenting with CAA compared to wild-type rats. Fewer proteins were significantly decreased in rTg-D rats. Of note, high temperature requirement peptidase A (HTRA1), a proteinase linked to transforming growth factor beta 1 (TGF-β1) signaling, was elevated and found to accumulate in cerebral vessels harboring amyloid deposits. Pathway analysis indicated elevation of the TGF-β1 pathway and increased TGF-β1 levels were detected in rTg-D rats. In conclusion, the present findings provide new molecular insights into the pathogenesis of CAA and suggest a role for interactions between HTRA1 and TGF-β1 in the disease process. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje