A note on b-generalized (α,β)-derivations in prime rings.

Autor: Bera, Nripendu, Dhara, Basudeb
Předmět:
Zdroj: Georgian Mathematical Journal; Oct2024, Vol. 31 Issue 5, p731-743, 13p
Abstrakt: Let R be a prime ring, let 0 ≠ b ∈ R , and let α and β be two automorphisms of R. Suppose that F : R → R , F 1 : R → R are two b-generalized (α , β) -derivations of R associated with the same (α , β) -derivation d : R → R , and let G : R → R be a b-generalized (α , β) -derivation of R associated with (α , β) -derivation g : R → R . The main objective of this paper is to investigate the following algebraic identities: (1) F ⁢ (x ⁢ y) + α ⁢ (x ⁢ y) + α ⁢ (y ⁢ x) = 0 , (2) F ⁢ (x ⁢ y) + G ⁢ (x) ⁢ α ⁢ (y) + α ⁢ (y ⁢ x) = 0 , (3) F ⁢ (x ⁢ y) + G ⁢ (y ⁢ x) + α ⁢ (x ⁢ y) + α ⁢ (y ⁢ x) = 0 , (4) F ⁢ (x) ⁢ F ⁢ (y) + G ⁢ (x) ⁢ α ⁢ (y) + α ⁢ (y ⁢ x) = 0 , (5) F ⁢ (x ⁢ y) + d ⁢ (x) ⁢ F 1 ⁢ (y) + α ⁢ (x ⁢ y) = 0 , (6) F ⁢ (x ⁢ y) + d ⁢ (x) ⁢ F 1 ⁢ (y) = 0 , (7) F ⁢ (x ⁢ y) + d ⁢ (x) ⁢ F 1 ⁢ (y) + α ⁢ (y ⁢ x) = 0 , (8) F ⁢ (x ⁢ y) + d ⁢ (x) ⁢ F 1 ⁢ (y) + α ⁢ (x ⁢ y) + α ⁢ (y ⁢ x) = 0 , (9) F ⁢ (x ⁢ y) + d ⁢ (x) ⁢ F 1 ⁢ (y) + α ⁢ (y ⁢ x) - α ⁢ (x ⁢ y) = 0 , (10) [ F ⁢ (x) , x ] α , β = 0 , (11) (F ⁢ (x) ∘ x) α , β = 0 , (12) F ⁢ ([ x , y ]) = [ x , y ] α , β , (13) F ⁢ (x ∘ y) = (x ∘ y) α , β for all x , y in some suitable subset of R. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index