Autor: |
Tanushri, Ahmad, Ayaz, Esi, Ayhan |
Předmět: |
|
Zdroj: |
Axioms (2075-1680); Sep2024, Vol. 13 Issue 9, p639, 11p |
Abstrakt: |
In this study, we investigate the concept of I * -statistical convergence for sequences of fuzzy numbers. We establish several theorems that provide a comprehensive understanding of this notion, including the uniqueness of limits, the relationship between I * -statistical convergence and classical convergence, and the algebraic properties of I * -statistically convergent sequences. We also introduce the concept of I * -statistical pre-Cauchy and I * -statistical Cauchy sequences and explore its connection to I * -statistical convergence. Our results show that every I * -statistically convergent sequence is I * -statistically pre-Cauchy, but the converse is not necessarily true. Furthermore, we provide a sufficient condition for an I * -statistically pre-Cauchy sequence to be I * -statistically convergent, which involves the concept of I * − l i m i n f . [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|