Polar targeting of proteins -- a green perspective.

Autor: Pukhovaya, Evgeniya M., Ramalho, João Jacob, Weijers, Dolf
Předmět:
Zdroj: Journal of Cell Science; Sep2024, Vol. 137 Issue 18, p1-16, 16p
Abstrakt: Cell polarity -- the asymmetric distribution of molecules and cell structures within the cell -- is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index