Autor: |
Choi, Yoon Jeong, Kim, Jee Hyun, Lee, Yeonju, Pyeon, Hee Jang, Yoo, In Kyung, Yoo, Jun Hwan |
Zdroj: |
Scientific Reports; 9/30/2024, Vol. 14 Issue 1, p1-14, 14p |
Abstrakt: |
Esophageal fibrosis can develop due to caustic or radiation injuries. Umbilical cord–derived mesenchymal stem cells (UC-MSCs) are known to mitigate fibrosis in various organs. However, the potential effects of UC-MSCs on human esophageal fibrosis remain underexplored. This study investigated the anti-fibrogenic properties and mechanisms of UC-MSC-derived conditioned media (UC-MSC-CM) on human esophageal fibroblasts (HEFs). HEFs were treated with TGF-β1 and then cultured with UC-MSC-CM, and the expression levels of extracellular matrix (ECM) components, RhoA, myocardin related transcription factor A (MRTF-A), serum response factor (SRF), Yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ) were measured. UC-MSC-CM suppressed TGF-β1-induced fibrogenic activation in HEFs, as evidenced by the downregulation of ECM. UC-MSC-CM diminished the expression of RhoA, MRTF-A, and SRF triggered by TGF-β1. In TGF-β1-stimulated HEFs, UC-MSC-CM decreased the nuclear localization of MRTF-A and YAP. Additionally, UC-MSC-CM diminished the TGF-β1-induced nuclear expressions of YAP and TAZ, while concurrently enhancing the cytoplasmic presence of phosphorylated YAP. Furthermore, UC-MSC-CM reduced TGF-β1-induced phosphorylation of Smad2. These findings suggest that UC-MSC-CM may inhibit TGF-β1-induced fibrogenic activation in HEFs by targeting the Rho-mediated MRTF/SRF and YAP/TAZ pathways, as well as the Smad2 pathway. This indicates its potential as a stem cell therapy for esophageal fibrosis. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|