High-Level Expression of β-Glucosidase in Aspergillus niger ATCC 20611 Using the Trichoderma reesei Promoter P cdna1 to Enhance Cellulose Degradation.

Autor: Chang, Jingjing, Wang, Juan, Li, Zhihong, Wang, Lu, Lu, Peng, Zhong, Yaohua, Liu, Hong
Předmět:
Zdroj: Fermentation (Basel); Sep2024, Vol. 10 Issue 9, p461, 16p
Abstrakt: β-glucosidase is a key component of cellulase for its function in hydrolyzing cellobiose to glucose in the final step of cellulose degradation. The high-level expression of β-glucosidase is essential for cellulose conversion. Aspergillus niger ATCC 20611 has the potential for efficient protein expression because of its ability to secret enzymes for the industrial production of fructooligosaccharides, but it lacks robust promoters for high-level protein expression. Here, the development of A. niger 20611 as a powerful protein expression system exploited the conserved constitutive promoter Pgpd1 of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene from Trichoerma reesei to drive the expression of the enhanced green fluorescent protein in A. niger ATCC 20611. The mycelium of the transformant AGE9 exhibited intense fluorescence. Then, the promotor Pgpd1 was used to drive the expression of β-glucosidase and the enzyme activity of transformants AGB1 and AGB33 were 1.02 and 0.51 U/mL, respectively. These results demonstrate that the promotor Pgpd1 from T. reesei was applicable for A. niger ATCC 20611. Furthermore, the T. reesei-specific robust promoter Pcdna1 was used to drive the expression of β-glucosidase. The β-glucosidase exhibited a high-level expression with a yield of 15.2 U/mL, which was over 13.9 times higher than that driven by the promoter Pgpd1. The β-glucosidase was thermally stable and accounted for 85% of the total extracellular proteins. Subsequently, the fermentation broth including β-glucosidase was directly added to the cellulase mixture of T. reesei for saccharification of the acid-treated corncob residues and the delignified corncob residues, which increased the saccharification efficiency by 26.21% and 29.51%, respectively. Thus, β-glucosidase exhibited a high level of expression in A. niger ATCC 20611 and enhanced cellulose degradation by addition in vitro. In addition, the robust promoter Pcdna1 of T. reesei could drive the high-level expression of protein in A. niger ATCC 20611. These results demonstrate that the promoters in filamentous fungi could be employed across species in A. niger ATCC 20611 and further facilitated the efficient expression of β-glucosidase to optimize cellulases for efficient cellulose transformation. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index