Decreased P Cycling Rate and Increased P-Use Efficiency after Phyllostachys edulis (Carrière) J. Houz. Expansion into Adjacent Secondary Evergreen Broadleaved Forest.

Autor: Song, Shuwang, Wang, Lin, Compson, Zacchaeus G., Xie, Tingting, Liao, Chuyin, Huang, Dongmei, Liu, Jun, Yang, Qingpei, Song, Qingni
Předmět:
Zdroj: Forests (19994907); Sep2024, Vol. 15 Issue 9, p1518, 13p
Abstrakt: (1) Background: Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) expansion has seriously altered the species composition and structure of adjacent forest ecosystems in subtropical regions. However, the shift in phosphorus (P) biogeochemical cycling has yet to be assessed, which is a critical gap considering the great variation in ecophysiological properties between invasive bamboo and the displaced native tree species. (2) Methods: We investigated and compared expansion-induced changes in P pools (plant, litter, and soil) and P fluxes (plant uptake and litterfall return) using paired sampling of the bamboo-dominated forest (BDF) and secondary evergreen broadleaved forest (EBF) at Jiangxi province's Dagang Mountain National Forest Ecological Station. (3) Results: Both the P storage of the plants and litter were significantly greater by 31.8% and 68.2% in the BDF than in the EBF, respectively. The soil total P and available P storage were 28.9% and 40.4% lower, respectively, in the BDF than in the EBF. Plant P uptake was 15.6% higher in the BDF than in the EBF, and the annual litter P return was 26.1% lower in the BDF than in the EBF due to higher P resorption efficiency for moso bamboo compared with evergreen broadleaved tree species. The ecosystem P cycling rate was reduced by 36.1% in the BDF compared with the EBF. (4) Conclusions: Moso bamboo expansion slowed the broadleaved forest ecosystem's P cycle rate, likely because moso bamboo has higher P-use efficiency, reserving more P in its tissues rather than returning it to the soil. The results from this study elucidate an understudied element cycle in the context of forest succession, demonstrating the ecosystem consequences related to bamboo invasion. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index