Robust and smart: Inference on phenotypic plasticity of Coffea canephora reveals adaptation to alternative environments.

Autor: Ferrão, Maria Amélia G., Riva‐Souza, Elaine M., Azevedo, Camila, Volpi, Paulo S., Fonseca, Aymbiré F. A., Ferrão, Romario G., Montagnon, Christopher, Ferrão, Luis Felipe V.
Předmět:
Zdroj: Crop Science; Sep2024, Vol. 64 Issue 5, p2709-2724, 16p
Abstrakt: Coffee is an important crop with economic and social importance in several countries. With a daily consumption estimated at 2.2 billion cups, its sustainability is facing critical challenges given the projected climate changes. Coffea arabica, which represents ∼60% of the global market coffee is a delicate crop, quite susceptible to diseases and biotic stresses. Developing climate‐resilience cultivars is necessary, and it includes coffee plants adapted to new farming conditions that can meet the demand for biotic and abiotic tolerance and quality. In this context, Coffea canephora emerges as a potential candidate if the crop combines plasticity and cupping quality. Plant plasticity refers to adjusted phenotypic performance when grown in different environments, a fact that may help mitigate the detrimental effect of climate changes. In this study, using a multiple environment trial, we combined genomic and genotype‐by‐environment analyses to answer the following main question: How the climate effects may affect the phenotypic plasticity in C. canephora? Our contributions in this paper are fourfold: (i) we draw attention to the cupping quality and yield performance of C. canephora cultivars when evaluated in high‐altitude and cold weather, (ii) we compared C. arabica and C. canephora phenotypic plasticity and highlight genotypes with broad and specific adaptation to certain environmental conditions, and finally, (iii) using stochastic simulation, we emphasize the potential of molecular breeding in the long term in coffee. Altogether, we present an emerging view on how C. canephora could be a valid alternative for climate‐smart cultivars in a projected scenario of altered climatic conditions. Core Ideas: Coffee sustainability is facing critical challenges given the projected climate changes.Inference on plant plasticity can identify plants more subjected to genotype‐by‐environment interaction, and therefore mitigate the detrimental effect of rapidly changing climate.Analyses of Coffea canephora phenotypic plasticity highlighted genotypes with broad and specific adaptation to certain environmental conditions.Results shed new light on the use of C. canephora as an alternative for climate‐smart coffee cultivars. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index