Abstrakt: |
The carbon dioxide (CO2) conversion to useable compounds remains a great contest to scientists, engineers, and environmentalists with regard to the reverse of the oxidative degradation of organics. This conversion is essential for the development of complementary fuels and raw materials for various industries, which in turn will help in avoiding the drastic increase in tropospheric temperature due to greenhouse effect leading to global warming. The solar energy is the earth's essential power source along with the other various forms of energy for example fossil fuels, hydropower, wind, and biomaterials, etc. The final goal is to establish the artificial photosynthesis, which can be replicated thru various chemical reduction techniques of CO2 by employing appropriate photo-, thermal- and electro-catalysts in order to produce different one carbon atom (C1) and higher carbon atoms containing products. Besides, the utilization of clean and sustainable CO2 towards high-value products is of great interest today due to the recognized environmental worries and subsequent lessening of the fossil fuels utilization load to meet the energy demand of mankind. This way, solar energy can directly and/or indirectly be altered and stored in chemical energy form for industrial as well as societal applications. In this article our endeavor is to summarize the advances in CO2 chemical reduction research area till date especially in free radical-based methods such as electrochemical, photochemical and plasma chemical for the development of carbon species up to two carbon (C2) atoms containing products perceived in the chemical reduction of CO2. The author hopes that this piece of work will be helpful to researchers and readers who are focused on the field of CO2. [ABSTRACT FROM AUTHOR] |