Abstrakt: |
Photoreception is essential to coral growth, reproduction, and stress responses. Thus far, opsin-based photoreception and potential photoadaptation in Scleractinian corals remains unclear. This study used natural and light-emitting diode (LED) lighting to investigate how Acropora digitifera, which is adapted to shallow-water environments, responds to day–night conditions. We successfully cloned three opsin genes (Adopsin1, Adopsin2, and Adopsin3). Adopsin1 and Adopsin2 clustered with the Cnidopsins, whereas Adopsin3 clustered with the anthozoan-specific opsin I group. In situ hybridization showed positive signals of these genes in coral endodermal and ectodermal layers. When A. digitifera branches were reared under a day–night cycle with natural light, a day-high and night-low pattern was observed in the transcript levels of Adopsin1 and Adopsin3. Genes related to calcification [plasma membrane calcium transporting ATPase 2 (PMCA)] and oxygen homeostasis regulation [hypoxia-inducible factor 1 alpha (HIF1α)] showed similar patterns. Rearing of branches under a day–night cycle (photoperiod = 12:12, 26.5–29.3 μmol s−1 m−2) with red (λmax = 628 nm), but not blue (464 nm) or green (519 nm) LED lighting led to increases in transcript levels of Adopsin1 and Adopsin3 during photophase. The transcript levels of carbonic anhydrase, PMCA, HIFα, and sodium-glucose cotransporter were significantly higher during photophase than during scotophase. Furthermore, Adopsin3 upregulation occurred within 4 h of exposure to a red LED light at night. These results suggest that A. digitifera can responding to long wavelengths of light, which play a crucial role in the photophysiology of the coral host. The capacity to perceive red light provides advantages in physiological adaptation and ecological niche occupation by A. digitifera in shallow waters. [ABSTRACT FROM AUTHOR] |