Autor: |
Lee, Tae Hoon, Joo, Taigyu, Jean-Baptiste, Philippe, Dean, Pablo A., Yeo, Jing Ying, Smith, Zachary P. |
Zdroj: |
Journal of Materials Chemistry A; 9/28/2024, Vol. 12 Issue 36, p24519-24529, 11p |
Abstrakt: |
Polymers of intrinsic microporosity (PIMs) have shown great potential for membrane-based hydrogen separations. The archetypal PIM, PIM-1, features hydrogen permeability that is 2–3 orders of magnitude higher than that of conventional polymers. However, the hydrogen selectivities of PIM-1 still need to be improved to meet the purity required for hydrogen production and distribution processes. Herein, we report a facile approach to fine-tune the microstructure of PIM-1 films by converting the nitrile groups of PIM-1 into aldehyde groups at room temperature. The aldehyde-functionalized PIM-1 (PIM-CHO) has a significantly higher concentration of ultramicropores (<7 Å) compared to PIM-1 as confirmed by gas sorption and X-ray scattering analyses. Ultimately, this feature results in excellent H2/N2 and H2/CH4 separation performance for PIM-CHO, approaching the most recent 2015 upper bound and outperforming all post-synthetically modified PIM-1 membranes reported to date. Mixed-gas transport studies also demonstrate the excellent potential of PIM-CHO for its deployment in practical applications. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|