Autor: |
Goh, Jonathan Y. M., Thompson, Michael, Dallas, James, Balachandran, Avinash |
Předmět: |
|
Zdroj: |
Vehicle System Dynamics; Oct2024, Vol. 62 Issue 10, p2590-2613, 24p |
Abstrakt: |
Autonomous vehicles that can reliably operate outside the stable handling limits would have access to a wider range of maneuvers in emergencies, improving overall safety. To that end, this paper presents a novel Nonlinear MPC approach for vehicle control with deeply saturated rear tires. Longitudinal slip management is elevated from the chassis control layer into the optimisation problem by using a coupled-slip tire model, and explicitly including wheelspeed dynamics. Terminal costs on sideslip stability help compensate for the finite horizon, while road bounds and static obstacles are encoded using slack constraints. Experiments on a racetrack with a modified Toyota GR Supra validate the controller's ability to smoothly transition from dynamic, non-equilibrium drifting to grip driving. Further experiments demonstrate robustness to significant longitudinal force and wheelspeed disturbances, and showcase the controller flexibly transitioning in and out of the sliding tire regime to balance slack constraints with tracking objectives. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|