Autor: |
Ernanto, I., Ueda, A., Wijayanti, I. E. |
Předmět: |
|
Zdroj: |
International Electronic Journal of Algebra; 2024, Vol. 36, p1-15, 15p |
Abstrakt: |
Let M = ⊕n∈ZMn be a strongly graded module over strongly graded ring D = ⊕n∈ZDn. In this paper, we prove that if M0 is a unique factorization module (UFM for short) over D0 and D is a unique factorization domain (UFD for short), then M is a UFM over D. Furthermore, if D0 is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module L = ⊕n∈Z0Mn to be a UFM over positively graded domain R = ⊕n∈Z0Dn. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|